On Continuation Methods for the Numerical Treatment of Multi-Objective Optimization Problems
نویسندگان
چکیده
In this report we describe how continuation methods can be used for the numerical treatment of multi-objective optimization problems (MOPs): starting with a given Karush-Kuhn-Tucker point (KKTpoint) x̃ of an MOP, these techniques can be applied to detect further KKT-points in the neighborhood of x̃. In the next step, again further points are computed starting with these new-found KKT-points, and so on. In order to maintain a good spread of these solutions we use boxes for the representation of the computed parts of the solution set. Based on this background, we propose a new predictor-corrector variant and show some numerical results indicating the strength of the method, in particular in higher dimensions. Further, the data structure allows for an efficient computation of solution sets of MOPs with more than two objectives, which has not been considered so far in most other existing continuation methods.
منابع مشابه
Constrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm
Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...
متن کاملOPTIMAL DESIGN OF TRUSS STRUCTURES BY IMPROVED MULTI-OBJECTIVE FIREFLY AND BAT ALGORITHMS
The main aim of the present paper is to propose efficient multi-objective optimization algorithms (MOOAs) to tackle truss structure optimization problems. The proposed meta-heuristic algorithms are based on the firefly algorithm (FA) and bat algorithm (BA), which have been recently developed for single-objective optimization. In order to produce a well distributed Pareto front, some improvement...
متن کاملApproximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کاملSolving fuzzy stochastic multi-objective programming problems based on a fuzzy inequality
Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty.In this paper, we focus on multi-objective linear programmingproblems in which the coefficients of constraints and the righthand side vector are fuzzy random variables. There are several methodsin the literature that convert this problem to a stochastic or<b...
متن کاملStudy on multi-objective nonlinear programming in optimization of the rough interval constraints
This paper deals with multi- objective nonlinear programming problem having rough intervals in the constraints. The problem is approached by taking maximum value range and minimum value range inequalities as constraints conditions, reduces it into two classical multi-objective nonlinear programming problems, called lower and upper approximation problems. All of the lower and upper approximatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005